
Nonradiative recombination of a localized exciton

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys.: Condens. Matter 7 7349

(http://iopscience.iop.org/0953-8984/7/37/008)

Download details:

IP Address: 171.66.16.151

The article was downloaded on 12/05/2010 at 22:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/7/37
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 7 (1995) 734927366, Printed in the UK 

Nonradiative recombination of a localized exciton 
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Institute of Physics, Charles University. Ke Karlovu 5, I21 16 Prague 2. Czech Republic 

Received 22 December 1994, in final form 19 April 1995 

Abstract. In this work a simple model of nonradiative recombidon of a I d z e d  exciton is 
rigomusly shldied. Depending on the details of the line% coupling Hamiltonian to single-made 
phonons coupled to P big reservoit of fast modes, different results are obbined. Exponential 
exciton decay has been found just in special situations. 

1. Introduction 

In this work we study the following situation. Matter with a periodical strncture which 
contains impurity sites is subjected to the influence of a short pulse of light. The resulting 
exciton moves through the matter until it is trapped in one of these impurities. We consider 
the potential corresponding to the impurity to be sufficiently deep that the thermal excitation 
cannot wexcite the exciton back to cause moving of the exciton again. Further the exciton is 
supposed to be localized in the first excited electronic level of the substitute molecule (atom). 
As the interaction of the trapped exciton with surrounding sites is too weak compared 
to the potential well, it only leads to a small renormalization of the excited state of the 
substitute molecule (atom). Hence we will not have to distinguish between the excited and 
renormalized excited states. 

Further the exciton interacts with surrounding ions, which vibrate around their 
equilibrium positions. For the sake of clarity we suppose that tk acoustic vibrations 
(responsible for translational vibrations) do not much influence the situation, therefore, 
only optical vibrations are taken into account in the exciton-phonon interaction, which is 
a standard case in polar crystals [l]. The typical energy gap for the excited state is about 
2-5 eV; for optical vibrations the energy is about 0.1-0.3 eV. These optical vibrations are 
not isolated, but also interact with very fast electronic states and with remaining acoustic 
modes. The time behaviour of the trapped exciton can thus be well described by a two- 
level system which interacts with phonons. In general, the problem of the interaction of a 
two-level system with the environment is coupled with a problem of quantum tunnelling 
in a doublewell potential for low temperatures (the problem of tunnelling was introduced 
by Hund [Z] and later developed by Oppenheimer [3], Gamow [4]. Gurney and Condon 
[5]). In the last decade a great deal of interest in quantum tunnelling was stimulated by 
macroscopic quantum tunnelling in a Josephson system /6]  and the theoretical work of 
Caldeira and Leggett [7]. There are many works concerning quantum tunnelling in the 
presence of coupling to many degrees of freedom, such as phonons, quasiparticles and 
electrons. Among them are the work on deep inelastic collisions of heavy ions by Brink et 
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ai [SI and by Mohring and Smilansky [9]. Quantum tunnelling also has a very long history 
in solid state physics [10-12]. The model exciton-phonon Hamiltonian introduced below 
can be transformed by an appropriate unitary transformation to a form similar to the well 
known spin boson Hamiltonian [13]. If we linearize the exciton-phonon interaction we have 
the situation discussed by many authors (see e.g. 1141). It would be quite confusing to list 
all important works which have been done in that field. For simplicity we mention the work 
of Wagner [I51 (see also references therein), in which the double-well potential interacting 
with one phonon mode was treated. The two parameters appearing in the interaction and 
the energy gap of the double-well potential were changed in various hierarchies. Wagner 
then calculated the probability of finding the particle in the left minima for these competing 
models in some perturbative way. Another interesting work was performed by Denner and 
Wagner 1161. These authors showed that the static base and adiabatic base approaches led 
to different results in the first order of perturbation. 

Similarly to the works mentioned we also consider one phonon mode. Another feature 
of our work, similar to [15], is changing the coupling parameters. However, we stress 
that all our treamnt is unperturbative. We succeeded in computing the probability of 
localization of the electron at the upper level for times of about 5-30 in the units of the 
inverse of the exciton energy gap. Furthermore, if we realize that the exciton energy gap 
is about 10 times greater than the energy of phonons, the perturbation technique would 
then require a very high order. This limitation does not apply to our treatment here. All 
approximations assumed here are of numerical character only and were correspondingly 
checked in the course of calculations. 

It is practically impossible to measure nonradiative relaxation of the exciton 
experimentally. We conjecture that the more complicated time behaviour of the nonradiative 
exciton relaxation can be transferred into the radiative exciton relaxation. There exist 
luminescence quenching experiments [17] which have a component corresponding to 
nonexponential decay (we admit that this nonexponential decay may be of a different origin 
than in our case). Numerical simulation of the exciton tunnelling in a continuum of phonons 
(ohmic case) [IS] proved no simple time dependence. 

2. The physics of the problem and model Liouville superoperator 

We put time t = 0 at the moment when the exciton is already trapped in the immobile 
hole in the first electronic excited state. Here we restrict the motion to the first two lowest 
energy levels. This two-level system is described by the well known Pauli U matrices. 
The optical modes of vibrations are described by one characteristic mode of a harmonic 
oscillator. Fast electronic states of the environment (ions, molecules, . . . ) of the exciton and 
remaining acoustic vibrations form a big reservoir, the dynamics of which is considered as 
being very fast compared to the optical mode. Then the influence of that big reservoir on the 
vibrational mode fulfils the condition for stochastic modelling. In such a defined physical 
model we postulate our task as the problem of finding the time dependence of the probability 
of occurrence of the exciton in the first electronic excited level if the exciton is kept there 
at the time t = 0. It is very useful to realize that in the beginning we assume the phonons 
to be unrelaxed. If there exist the first excited and the ground levels only, the vibration 
should be unrelaxed, because at the moment when the exciton is trapped, the vibration is 
in thermal equilibrium at the temperature T .  If higher excitonic levels exist, we assume the 
vibration to be relaxed (or partially relaxed) around the higher level at the moment when the 
exciton jumps down to the first electronic excited level. Then we renormalize the vibration 
around the higher level, but this renormalized vibration is unrelaxed with respect to the first 
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excited level. This corresponds to the situation where the jump of the exciton is caused by 
very fast degrees of freedom (this fast reservoir is not taken into account explicitly except 
for its assumed role in formation of the initial state) and the energy is transferred to these 
fast degrees of freedom. But we stress that the preceding history of the initial state is not 
of interest in this work. 

Let Il), 12) be the first electronic excited and ground electronic levels with energies -E 

and --E, respectively, and b, bt be the phonon annihilation and creation operators. Then for 
the Hamiltonian of the central phonon-exciton system (stochastic influence will be discussed 
later) we assume 

[b+b + E+]  + [ (Duz + AU~)]] = HO + H I .  (1) 43 
Here Q is the phonon frequency, 2.6 is the relative energy gap of the exciton measured in 
units of the phonon frequency, D and A are the relative coupling strengths of the exciton 
to the optical mode. The so-called Pauli matrices are defined in an obvious way 

The interaction term HI is linear in the phonon displacement and is otherwise taken in 
a quite general form. 

As the phonon mode is in interaction with a bath of very fast electronic states we can 
use the generalized Haken-Strobl-Reineker model [19] for description of that interaction. 
If L' is the Liouville superoperator of the central exciton-phonon,system and Ls is the 
Liouville superoperator describing the influence of the bath on the phonons then for the 
total Liouville superoperator L we can write 

L=L'+LY 

, . . .]. 
1 
A 

I,'... = -[H 

Denoting the phonon eigenstates by Greek letters and the exciton eigenstates by Latin ones 
the stochastic contribution in the simplest approximation reads [ZO] 

Here the coefficients pap will be omitted. For details we refer to [ZO]. For the coefficients 
yap we take the following equation 

These coefficients are introduced according to [21]. The coefficient determines the strength 
of the interaction of the harmonic oscillator with the bath. We should realize that in the 
stochastic model the coefficient need not be small. 
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3. The mathematical formulation and solution of the problem 

To get the probability of occurrence of the exciton on the first electron excited level we 
should solve the following Liouville equation: 

(6) 
a 
a t  
-p( t )  = -iLp(t) 

with the initial condition for the density matrix operator 

P(0) = 11)(11@ P R .  (7) 
Here p R  is the phonon canonical density matrix operator. One can easily realize that such 
a choice of the initial condition term really describes the situation of the nonrelaxed excited 
electron. 

To exclude supefluous information contained in the solution of the Liouville equation 
we come to the Nakajima-Zwanzig identity. It was shown [29] that this convolution- 
type equation retains information on the initial state for a very long time in the second 
order. Here we stress that no perturbation expansion is made here. The above-mentioned 
Nakajima-Zwanzig identity reads [22,23] 

-Pp(t) = -iPLPp(t) - P L  

(8 )  
containing idempotent superoperator P (P = Pz). In the literature we often meet various 
types of P (e.g. Argyres-Kelley operator 1241, Peier operator [E]). Instead of these usual 
forms of P we use the so-called partition projection superoperator [26]. Although this 
superoperator was originally used for description of the so-called sink model, we can use it 
here, too, because it projects in the excitonic space onto one matrix element only. We take 
P in the form 

l a 
at  

exp[i(l - P)L(r - t)](l - P)LPp(r)dr  

-iPLexp[-i(l - P)Lt)(l - P)p(O) 

P A  = I1)(lI@pRTrph(llAll). (9) 
Here pR is the canonical phonon density matrix operator 

with 

z = Trph(eXP(-,8Hpk)). (1 1) 

If we take the initial condition according to (7), the first and the third terms on the right-hand 
side of (8) disappear and we arrive at a single scalar equation 

with the following definition of the scalar memory function: 

w(t )  = Trph(llLexp{-i(l - P)L~J( I  - P)L[I1)(11@ pR)ll). (13) 

P," = Trph(nlP(t)lm). (14) 

We have introduced the reduced exciton density matrix operator pm(f) defined as 

Definition (9) of the superoperator P led to equation (12), which is a scalar 
integrodifferential equation without the time local and initial condition terms. Instead of 
usual methods of solution of (12). e.g. the Laplace transformation, we use a so far little-used 
method of SMla and Bilek 1271. 
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Let us define the following set of functions: 
- 

i = o , l ,  ~... (i + 1)Ji+10) &(t)  = 
where J i @ )  are the Bessel functions of the first kind. From our point of view, these functions 
have the following important properties: 

d -  1 -  
-Jo(t) = - -J1(t)  
dt 2 
d -  1 -  
dt 2 
--Ji(t) = - (&-,( t )  - &+I@)) 

l ' j ( t  -s)~;.(s)ds = X+j+l(tj (18) 
- 
Ji(0) = i8io i 1.2, . . . (19) 

and form a complete set [28]. We assume now that p ~ ~ ( t )  and w(t )  are expanded in terms 
of the functions &(t ) .  

Equation (12) and relations (16)-(21.) lead to the recurrent relations 

PO = 2011 (0) = 2 
PI = o  
PZ = PO - 2WOPO (22) 

i-1 
Pi+l =Pi-1-2~WjPi- l - , i  > 1. 

j=O . 
Thus the problem of solving equation (12) is replaced by the problem of solving the algebraic 
system of equations. Given the set of iq onc can easily calculate the set of pi. However, the 
set of wi is still unknown and should be determined. At first one may consider using some 
numerical methods, but what is really surprising is the fact that the set of .& ( t )  functions 
makes it possible to obtain analytical expressions for the wi coefficients. 

The expansion of a given function in terms of the functions r,(t) is one of the forms of 
the Neumann series of the first kind [28]. Any function f ( t )  which can be expanded into 
the power series 

can also be expanded into the series 

with the same radius of convergence. The mutual relation between the coefficients of these 
series is given by 1281 
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If we expand the exponential in (13) into the power series we find the relation 

t" 
n! 

m 

W ( t )  =Ea- 
n =O 

where 

5, = iTrp~(llLRn+'{I1)(ll @ p R ] I 1 )  
R = -i(l - P)L. 

Using (U) we obtain the following result: 

Another important question is the rate of convergence of these series and the possibility of 
their truncation. It may appear in this context that the expansion in terms of the functions 
.&(At) (here A means a real number) instead of &(f) is more convenient. That method is 
called the time scaling method. 

Here we calculate the matrix elements of L and (1 - P)L. To achieve this we realize 
that Latin (Greek) letters designate the exciton (phonon) degrees of freedom of motion so 
that we can rewrite their definition into the matrix form. Doing this we write 

Pfm;j,%ky;16 = ~ i . l ~ j . l ~ k . l ~ f . l ( ~ ~ ~ R I B ) G , : s  (31) 
1 

Lis; jp;xy;ls = j ; [ H i m : d j p ; [ s  - Hrs: j&y;imI (32) 

(PL')fa:jB;ty;fs = -&.18j.I fi (4PRIS)[H1,;ky8r:l - &s;ly8k:11. (33) 
1 

AS Lo corresponds to HO and L' corresponds to HI one can write the following equations 
using (1): 

(34) Ge; jp :xI :~~ = ~ i a ; k y 8 j p : f s [ ~  - B + 2 c I j  - i l l  

Further, we must realize that the stochastic conhibution Ls cannot be written as a 
commutator, but we combine (4) and (5) to obtain 
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x(&Ti8&v-l + &8&y+,). 

Then for the total Liouville operator we have the equation 

L = LO +L' + L ~ .  

(1 - P ) L  = LO+ L' + L S  - PL'. 
Operator (1 - P ) L  is a sum, which can be expressed in the form 

We do not Write the explicit formulae for these operators, because they are too complicated. 

4. Numerical results 

In the calculation of p ( t )  we must overcome two problems connected with infinite sums. The 
first problem is the convergence of equations (20) and (21). The second is an infinite sum 
over the phonon states in (28), which must be truncated using the maximum phonon cut-off 
number N.  To overcome these difficulties we must realize that there are two possibilities 
of calculating the memory function tu$). First, we can use definition (21) with wi defined 
according to (28) and (30) ('analytical method'). Second, we can use definition (13) and 
calculate the memory function for a given set of discrete values o f t .  We can adopt the latter 
as a convenient method of determination of N .  Here we put t = 0.0% (i = 0, 1, . . . , 100) 
and keep N as a moving parameter. Trying the convergence of the set w(0.05i) with respect 
to N we come to the result that the value N = 8 is sufficient. We thus obtain a set S of 
w(0.05i) numbers (for N = 8), which is also suitable for overcoming the first problem, 
because we can calculate w(t)  for t = 0.05 using the analytical method. The convergence 
in (21) with respect to the number of $(f) can thus be independently tested with respect to 
the set S. For a good convergence we must take 80-130 &(t )  functions. All calculations 
are made in Qt time units. 3 expansion (21) we must also use the time-scaling method 
(see above). 

For the sake of simplicity we denote p11 (r) as 

p ( 0  = Pll(t) .  (44) 
To obtain time-dependent P ( t )  we must define a time scale first. We take t in Q-' units 
(or Qt units) which is equivalent to the choice 

sz- I .  (45) 
If we denote the inverse temperature of the bath and phonons as T-', the maximum (cut-off) 
phonon number as N, the relative (compared to Q) exciton-phonon interaction constants as 
D and A, the relative (compared to Q) phonon coupling strength to the bath as L and the 
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relative (also compared to a) exciton energy gap as 2 ~ ,  we obtain table 1 of input parameters 
studied (we calculate 23 Po) dependences for individual input parameters and draw 16 
output graphs for interesting combinations of input parameters and P ( t )  dependences). In 
the table, k means the Boltanann constant. Varying one parameter with other parameters 
fixed we come to various features of the P ( t )  dependence. That is why we plot several 
curves in one graph for varying parameters in the following figures. 

Table 1. 

Input D A E (kT)-' N 

1 
2 
3 
4 
5 
6 
7 
8 
9 
IO 
I I  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

1 1  
0.1 0.1 
1 1  
1 1  
1 1  
1 1  
1 1  
1 1  
1 1  
1 1  
1 1  
1 1  
1 0  
0 1  
1 1  
1 1  
1 1  
1 1  
0 1  
0 1  
0 1  
0 1  
0 1  

1 
0.1 
1 
5 
1 
0 
0 
1 
1 
1 
1 
1 
1 
I 
1 
0 
0 
0 
1 
0 
5 
1 
0 

3 0.5 8 
5 1  8 
3 1  8 
3 1  8 
IO I 8 
IO 1 8 
3 1  8 
3 2  8 
3 3  8 
3 5  8 
3 IO 8 
2 1  8 
3 5  8 
3 1  8 
1 1  8 
1 1  8 
1 3  8 
1 5  8 
5 1  8 
3 1  8 
3 1  8 
IO I 8 
1 1  8 

In figure 1, we can study the dependence of PO) on varying temperature. Increasing 
temperature causes steeper decay of P(t) ,  but the temperature dependence is not too strong. 
This corresponds to the fact that phonons must exchange energy with the exciton to cause 
the jump of the exciton to the lower electronic energy level. For smaller temperatures we 
succeeded in calculating P(r)  for greater values of the argument t .  However, it should be 
noted that here no strong oscillations have occurred. This is the result of the stochastic 
influence, which leads not only to the relaxation of  the phonons but also to the relaxation 
of the exciton. Steeper decay of P(r)  with increasing temperature can also be confirmed in 
figure 2, but this fact is not so easily evident because oscillations occur, due to the switched- 
off stochastic influence. The local damping character is thus added to the oscillation 
character. For short times the situation with Iower temperature leads to a steeper decay of 
P(t) ,  but the overall decay is a little weaker. We should also remember a strong amplitude 
of the oscillations for removed stochastic influence, which is a quite different case from that 
if the stochastic field were taken into account. 

A comparison of situations for switched-on and switched-off stochastic fields is studied 
in figure 3. The stochastic field causes strong damping, while in the situation with the 
switched-off stochastic field oscillations with a large amplitude are added to the damping. 
This causes a stronger decay of P ( t )  for short time. We should also note that the overall 
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1 .oo 

P( t) 
0.95 

0.90 

0.85 

0.80 
0.0 0.5 1 .o 1.5 2.0 2.5 

t 

Figure 1. The dependence of P ( r )  for the input parameters D = 1. A = I, .k = 1, 6 = 3, 
N = 8. (kT1-I = 0.5, 1, 2 3, 5, 10 for (a). (b), (c). (d), (e), (0. 

P( t) 

1 .oo 
0.95 
0.90 
0.85 
0.80 
0.75 
0.70 
0.65 
0.60 
0.55 
0.50 
0.45 

0.0 0.5 1 .o 1.5 2.0 2.5 3.0 
t 

Figure 2. The dependence of P(r)  for the input parameten (a) D = 1. A = I ,  
(kT)-l = 1, N = 8, (b) D = 1, A = 1, 
A = 1, .k = 0, B = 1, (kT)-' = 5, N = 8. 

= 0. E = 1, 
= 0, B = 1, (kT)-l = 3, N = 8 or (c) D = I,  

decay of P ( t )  for the switched-on stochastic influence is fasEr than for the situation without 
it. A very similar situation is shown in figure 4. Here we study the same situation except for 
a lowered exciton energy gap. All quantities have been preserved there. If we change the 
exciton energy gap tenfold and other parameters are left unchanged we get the situation in 
figure 5. The stochastic influence leads to a greater damping and removes fast oscillations 
which occur for vanishing stochastic field. Comparing the last three figures we can also 
verify that lowering of the exciton energy gap leads to a stronger decay of P ( t ) .  

The dependence of P ( t )  on the exciton energy gap is studied in figure 6. The fact that 
the narrower exciton energy gap leads to much stronger decay is confirmed. The reason for 
that behaviour is in the fact that for'a narrower exciton energy gap the probability of jumping 
down of the exciton is greater (although virtual phonons do not require energy conservation, 
the probability of cascading down of the exciton is lowered for a greater exciton energy 
gap because the probability of multiphonon processes is lowered, too). Another interesting 
feature is the strong dependence of the frequency of oscillations on the exciton energy gap 
in the a-' units. However, in the (2~)- '  time units (the inverse of the exciton energy gap) 
the dependence is removed. In this time scale the period is about 7.3. Another interesting 
situation is seen in figure 7. Here'not only is the stochastic influence removed but,also 
the interaction constant D is set to fulfil D = 0. There are some changes compared to the 
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0.85 - 
0.80 

0.75 

- 

, 1 l I I 1 I t  I ,  I I 1 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 

Figure 3. The dependence of P(r) for the-input parameters (a) D = 1. A = I ,  i = I ,  E = 3 
(kT)-' = 1, N = 8 or@) D = 1, A = I, k = O ,  E =3, (U)-' = I ,  N = 8. 

t 

0.75 - 
0.70 - 
0.65 - 
0.60 - 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 

Figure 4. The dependence of P ( r )  for thejnput parameters (a) D = I, A = I ,  k = 1, B = 1. 
(kT)-' = 1, N = 8 or@) D = 1, A = 1, k = 0, c = 1, (kT)-' = I ,  N = 8. 

t 

1.000 

p( t) 0.995 

0.990 

0.985 

0.980 

0.975 

0.970 

0.965 I I 1 ' 1 ' 1 ' 1 ' 1  ! I  
0.0 0.2 0.4 0.6 0.8 1 .o 1.2 1.4 

Figure 5. The dependence of P(r) for the input parameten (a) D = 1, A = 1, i = 1, B = IO, 
(kT)-' = 1, N =  8 or@) D = 1, A = I , i = O ,  E = IO, (kT)-' = 1. N =8. 

t 

previous figure: First, the decay is not so strong as for D = 1. The greater exciton energy 
gap leads to the lower probability decay only in the (%)-I time units, not in the S2-' ones. 
The frequency of the oscillation of the probability is not conserved either in the (26)-' time 
units, or in the Q-' ones. This is caused by the fact that the tendency to the polaron effect 
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is now removed (D = 0). The dependence of P ( t )  on the exciton energy gap is drawn 
for the stochastic field in figure 8. The relation between the exciton energy gap and the 
decay of P ( t )  is confirmed again. Because of the stochastic influence the oscillations are 
removed. Here we put D = 0. The relation between the exciton energy gap and the decay 
of P( t )  is also studied in figure 9. Po) decreases more rapidly for smaller values of the 
exciton energy gap again. In this figure the stochastic influence is taken into account and 
D = 1. Oscillations are removed again. So far we have considered the behaviour of P ( t )  
with respect to temperature, exciton energy gap and stochastic influence.'We now turn our 
attention to the dependence of P ( t )  on interaction parameters more deeply. In figure 10 
one curve is plotted for very small interaction parameters. A = 0.1 causes only a very 
small decrease of E'@). Here we 'see that the very small value of = 0.1 leads to rapid 
oscillations~of P ( t )  because the stochastic influence is almost switched off. The case of 
A = 0 gives P ( t )  = 1 because the exciton-phonon interaction leads to a polaron only. A 
very important problem is the influence of the parameter D on the time behaviour of P ( t ) .  

1.00 

0.90 

0.80 

0.70 

0.60 

0.50 

C) 
- C 

- 
- 
- 
- 
- 
- 
- 
- 

~ l ~ ~ ~ ~ w ~ ~ ~ ~ ~  I I S I I I I  1 1 1 1 1 1 1  I I J I  

Figure 6. The dependence of P(r) for the input parameters (a) D = 1. A = 1, 
(kT)-' 
A = I ,  k = 0. E = 10, (kT)-' = 1, N = 8. 

= 0, e = I ,  
1, N = 8, (b) D = 1, A = I, k = 0, e = 3, (kT)-' & 1, N = 8 or (c) D = 1, 

- 
0.88 - 
i 

0.85 , ~ 1 , , 1 , , 1 ~ ~ 1 , , 1 ~ , 1 , , , , , ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  
0.00 0.30 0.60 0.90 1.20 1.50 1.80 2.10 2.40 2.70 3.00 5.30 

Figure 7. The dependence of P(r) for thefnput parameters (a) D = 0. A = 1. i = 0, e = 3, 
(kT)-' = 1. N = 8  or@) D = 0, A = 1, k=O, E = 1, (kT)-' = 1, N = 8. 

In figure 11 we test situations for D, = 1 and D = 0 when the stochastic influence is 
taken into account. We can observe that both the curves provide a similar P( t )  dependence 
and that D = 1 gives a little stronger decay of P ( t ) .  A practically equivalent result has 

t 



0.85 , I (  I 1  l ~ l ' l ' l ' l ' l ' l  
0.00 O.:O 0.20 0.40 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1610 

t 

= 1, N = 8. 
F i p  8. The dependence of P(t) for thefnpul paramelers (a) D = 0, A = 1. z = I ,  E = 5,  
(kT)-' = 1, N = 8 or@) D =O, A =  1, k =  1, E =3.  

d 

- - 
0.88 

0.84 
- - 
- - 

0.80 = - - 
0.76 , , ) I  1 ~ ~ , 1 1 ~ 1 ~ 1  

0.00 0.lO O.:O O.:O d 0  0.50 0 . iO  O.$O 0.80 0.90 1.00 1.10 1.20 
I 

C 

F i p  9. The dependence of P ( t )  for the input parameters (a) D = 1, A = 1, i = 1, € = 1, 
i k 0 - l  = 1. N =  8, (b) D = 1, A = 1, E =  1. e =2, (kT)-l = 1, N = 8, (c) D = 1, A = 1. 
k =  1, e =3, (kT)-I = 1, N = 8 or (d) D = 1, A = 1, = 1, f = 10, (k'f)-l = 1, N =  8. 
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t 

F i p  10. The dependence of P ( t )  for the i n p  parameters (a) D = 1, A = 0, 
(kT)-' = 1. N = 8 or (b) D = 0.1, A = 0.1. k = 0.1, 6 = 5,  (kT)-' = 1. N = 8. 

been obtained in figure 12 where we have changed the exciton energy gap to a smaller 
value. Then we come to the conclusion that the stochastic influence of the reservoir tends 
to destroy the inclination of the phonons to create a polaron as a result of taking D = 1 .  Let 



Nonradiative recombination of a localized exciton 7361 

us examine whether a very strong stochastic influence gives equivalent results for D = 0 
and D = 1. To answer that question one obstacle should be overcome. A large value 
of E leads to a memory function which is practically nonzero in the time interval (0. 0.2) 
only. This implies a problem of expanding such a memory function into a power series of 
the Bessel-like functions for nonzero times. We have thus succeeded in calculating P ( t )  
only for time interval (0, 0.2) in Q-' units. But the P(r )  dependence can be extended for 
an arbitrary time in the following manner. If we plot the memory functions for the set of 
parameters (1, 1, 5, 3, 1, 8) and (0, 1, 5 ,  3, 1, 8) in figure 13 and figure 14, respectively, 
we can really see that they are practically nonzero in the time interval (0, 0.2) only. But in 
that interval P(r) approximately satisfies the relation P ( t )  = 1. Realizing this fact we can 
perform the well known Markovian approximation outside the time interval (0, 0.2). Then 
for t > 0.2 we can replace the memory Function by a delta function. This approximation 
leads to the exponential decay of P(r ) .  If we realize that the exponential decay is linear for 
short times we can measure the lifetime of the exponential decay by measuring the derivative 
of P ( r )  near the point r = 0.2. We obtain for the lifetime a value of about 11-12 (in the 
S2-I units), which is the same number for both situations. Analysing figure 15 we come to 
the conclusion that for strong stochastic influence the behaviour of P(t )  is independent of 
the value of D.  The case of the switched-off stochastic field is plotted in figure 16. The 
values D = 0 and D = 1 give absolutely different results. The situation with D = 1 gives 
strong damping and oscillations both with a large period (of the order of several units of 
Q-') and an appreciable amplitude (about 0.1) and P(r)  decreases for r = 2 to a value of 
nearly 0.5. D = 0 causes rapid oscillations (the period of the oscillation is about 0.7) with a 
very small fluctuating amplitude (about 0.03) without any detectable decay. This result may 
appear surprising because the interaction term involving D does not cause cascading down 
of the exciton directly, but promotes the phonons to create a polaron only. This interaction 
term comes into effect through another interaction term (which involves constant A) only 
via its influence on the phonon states (caused by nonzero D). Many authors think that both 
the shifted and unshifted phonon states give the same result. That is why they omit the 
terh with the parameter D. We have found that this step may be justified if the stochastic 
effect of the fast reservoir is taken into account. 

0.965 I I I I ,  , ,  I ,  I I l I I I I I I I I 
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Figure 12. The dependence of P ( r )  for the input parameters (a) D = 1, A = 1, .6 
(KT)-' = 1, N = 8 or (b) D = 0, A = 1. = 1, 6 = 3, (kT)-' = 1, N = 8. 

Figure 13. The memorj function for the input parameters D = 1, A = I ,  x = 5, e = 3, 
(kT)-' = 1, N = 8. 
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Figure 14. The memory function for the input parameters D = 0, A = 1, k = 5,  6 = 3, 
(kT)-' = 1, N = 8. 

e 

Time t .  Exponential decay of the exciton state is rather exceptional; if this is the case, then 
it occurs from a certain time only. We have found several time scales connected with the 
decay and oscillations which could have fluctuating character. 

Temperature 2'. As shown in figure 1 and figure 2, increasing temperature results in a faster 
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Figure 15. The dependence of P(r )  for the input parameters (a) D = 1, A = I, e = 5, E = 3, 
(kT)-' = I ,  N ~ =  8 or (b) D = 0. A = 1. d = 5 ,  e = 3, (kT)-' = 1, N = 8. 
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Figure 16. The dependence of P(r )  for the input pammeters (a) D = 1, A = I .  k'= 0, B = I ,  
(kT)-' = 1, N = 8 or (b) D = 0. A = 1. d = 0, 6 = I, (kT)-' = 1, N = 8. 

t 

decay of the exciton probability P ( t ) .  This expected thermal dependence was confirmed. 

Exciton energy gap E .  Wider exciton energy gap leads to an increased number of phonons 
involved in the transition process provided that the standard energy conservation law applies. 
The probability of such a process is therefore suppressed, which ieads to a smaller exciton 
recombination rate, too. XIS expected dependence was also confirmed. There was, 
however, an interesting property discovered. If we take D = 1 (phonons axe promoted 
to create a polaron) we find that the period of the oscillations is practically conserved in 
the (2s)-' time units. Then we come to the following conclusion: if we try to renormalize 
the central exciton-phonon Hamiltonian in such a way that the effect of the phonon mode 
should be included in phenomenological constants only; we can write for the central exciton- 
phonon Hamiltonian H 

(46) H Î K~(OI(E)C~ + J ( E ,  A ,  D)o;) 

with 

to produce s-independent oscillation in the (ZE)- '  time units. We must also realize that 
due to the interaction between phonons and the exciton, the system reduced to excitonic 
degrees of freedom only does not conserve energy (transfer to the phonon mode). However, 
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in the case of a wide exciton energy gap the transfer is slowed and with a good accuracy 
we may say that in the case of a *de exciton energy gap the energy of the system reduced 
to excitonic degrees of freedom is conserved. It is not difficult to realize that the modified 
central exciton-phonon Hamiltonian causes periodical behaviour of P(t).  This property is 
well confirmed in figure 6 for the wide exciton energy gap. Then we can conclude that in 
the case of D = 1, = 0 and the wide exciton energy gap, electronic states and the exciton 
energy gap could he renormalized due to the interaction with phonons in such a way that 
the renormalized exciton energy gap is proportional to the bare exciton energy gap. The 
renormalized exciton energy gap is narrowed approximately sevenfold. Also we may easily 
verify that the lifetime of that renormalized state increases with an increased value of the 
exciton energy gap. 

Parameter of stochastic influence i. The stochastic influence of the bath is assumed to 
destroy the coherent-like behaviour of our single-mode phonons. We may be interested 
in whether this property is transferred to the excitonic space. We have verified that the 
stochastic influence destroys the coherent-like behaviour of the exciton, too. This could 
have been expected because the probability P(t)  of the exciton involves the sum over 
phonon space, too, and the stochastic influence leads to a finite lifetime. These two facts 
give a destructive interference effect. Here a question about the accuracy of the stochastic 
model may be put forward. We have already mentioned that the onedimensional case of the 
stochastic model leads to the limit of infinite temperature (measured by diagonal elements 
of p in the representation of true eigenstates of the central system, i.e. exciton + phonons in 
our case) for a long time. On the other hand, equation (5) makes our approach exceed the 
limits of the original stochastic model in the sense of the generalized stochastic Liouville 
equation model [20,19]. Moreover, in this work we are interested in small or intermediate 
times only. Another remarkable feature of the stochastic influence is hidden in the result 
that the cases D = 0 and D = 1 give very similar results if the phonon system is under 
a sufficiently strong influence of the stochastic field. Then the stochastic field is supposed 
to destroy (or suppress) the effect which promotes the phonons to create a phonon cloud 
resulting from the presence of the nonzero parameter D. For strong Stochastic field cases, 
D = 0 and D = 1 give practically undetectable differences-see figure 15. 

Parameter of symmetric exciton-phonon coupling A. Here we have verified an obvious 
fact that nonzero A is a necessary ccndition for the exciton recombination-see figure 10. 
For A = 0 we have P( t )  = 1 and for A = 0.1 we have P(t )  - 1. 

Parameter of antisymmetric exciton-phonon coupling D. This dependence is perhaps 
more interesting. We have proved that if the stochastic influence is switched off, D = 0 
and D = 1 give very different resu!ts-see figure 16. D = 0 leads to fast oscillations with 
a very small fluctuating amplitude without any detectable decay. D = I provides slow 
oscillations with a great amplitude and a strong decay for time t E (0,3) in 0-' units. This 
could be interpreted in the following manner: the oscillating phonon field changes the sign 
in the Aux(b + bt) term which acts against greater amplitude of the probability oscillations 
and its decay. The interference of the dynamics caused by the ux term and one of the 
phonons leads to fast oscillations and fluctuating amplitude. D = 1 promotes the phonons 
to form a polaron cloud which breaks the dynamics of the phonon system and then the 
rate of change of the sign in the leading interaction term Anx@ + bt) is suppressed. This 
enables the leading interaction term to come more effectively into action. 
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5. Conclusions 

We calculated the probability PO) of occurrence of the Frenkel exciton at the lowest excited 
level for the exciton interacting with singlemode optical phonons. Further we assumed 
the optical phonons to interact with very fast electronic states (modelled by a stochastic 
influence). We should like 6 stress that no simple time dependence is observed. Out of 
many time scales, one time scale originates from the Nakajima-Zwanzig equation, which 
gives dP(t)/dt = 0 for f = 0; another time scale is given by the damping of P ( t ) ;  others 
arise from the oscillating character of P ( t ) .  

Besides expected dependences with respect to the temperature, exciton energy gap 
and interaction parameters, other interesting properties were found (listed in the previous 
section). Among them we stress one result more than others. If we take the exciton-phonon 
interaction Hamiltonian Hi,, in a quite general form with respect to the exciton 

with the pure excitonic Hamiltonian satisfying 

H = ECkuZ (49) 
we have found that D = 0 and G = 1 are able to lead to appreciably different results if the 
stochastic field is sufficiently weak. This result is potentially very important because many 
authors put simply D = 0, which cannot be generally justified. However, if a sufficiently 
strong stochastic field is switched on, both the situations, D = 0 and D = 1, give practically 
the same results. Further we have found that if the stochastic field is removed, D = 1 leads 
to renormalization of the exciton energy gap. The renormalized exciton energy gap is 
proportional to the original exciton energy gap and is narrowed. 

We stress that the method used is unperturbative and applicable to any form of the 
interaction Hamiltonian (for example higher orders of the phonon displacement in the 
interaction Hamiltonian, too). 
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